
Learning to Fuzz from Symbolic Execution with
Application to Smart Contracts

COMS4507

Jack McPherson and Dong Bao

UQ

2020-04-29

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 1 / 41

Outline

1 Background

2 ILF System

3 Evaluation

4 Conclusion

5 Q&A

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 2 / 41

Background

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 3 / 41

Random Fuzzing vs. Symbolic Execution

Random Fuzzing
I Strengths

F Fast
F Scalable

I Weaknesses
F Ineffective input
F Low code coverage

Symbolic Execution
I Strengths

F Effective input
F High code coverage

I Weaknesses
F Slow

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 4 / 41

1 User calls invest() with
msg.value > goal

2 User calls setPhase(newPhase)
with newPhase = 1

3 Attacker (with address A) calls
setOwner(A)

4 Attacker calls withdraw()

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 5 / 41

Challenges of Fuzzing Smart Contracts

Stateful nature of smart contracts

Limited coverage of existing fuzzers (e.g. ECHIDNA)

Limited scalability of existing symbolic execution tools

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 6 / 41

Goal

Learn a fast and effective fuzzer from symbolic execution expert by using
imitation learning, then generate sequences of transactions to reveal
vulnerabilities of smart contracts.

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 7 / 41

Transactions and Blocks
Transactions

I Model a transaction, t, as a 3-tuple,

t = (f (x̄), sender , amount)

I f (x̄), a public function of the target smart contract (with arguments x̄)
I sender , the address of the transaction sender
I amount, the amount of Ether sent to the contract

Blocks
I Executing a transaction, t, against a block state, b, is denoted by

b
t−→ b′

I Sequence of transactions denoted

t̄ = {t1, t2, . . . , tn} ∈ T ∗

I Block state trace is denoted by

binit
t1−→ . . .

tn−→ bn

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 8 / 41

Markov Decision Processes (MDPs)
A Markov Decision Process (MDP) is a mathematical framework for
modelling a sequential decision-making problem probabilistically.
A MDP is defined as a 4-tuple,

(S,A, E ,R)

I S, the set of states
I A, the set of actions
I E : S ×A → S, the state transition function
I R : S ×A → R, the reward function

At each step, i ,
1 Observes the current state, si ∈ S
2 Performs an action, ai ∈ A
3 Receives a reward, ri = R(si , ai)
4 Advances to the next state via the state transition function, i.e.

si+1 = E(si , ai)

πopt = arg max
π

Eai∼π(si)

[
n∑

i=0

R(si , ai)

]
Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 9 / 41

Markov Decision Processes (MDPs) (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 10 / 41

Imitation Learning

Goal is to imitate behaviour of given expert, π∗, which achieves high
reward for given task

π∗ usually has high time complexity

Imitation learning uses expert to provide demonstrations which are
then used to train an apprentice, π, which has lower time complexity

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 11 / 41

Imitation Learning (cont.)

Run expert, π∗, on training set to construct dataset, D

D = {[(si , ai)]d}
|D|
d=1

Consists of samples, [(si , ai)]d ∈ (S ×A)∗

Aim to learn a classifier, C, on training dataset, D
I C will output a probability vector over the set of possible actions, A
I Aim to assign the highest probability to the actions taken by expert, π∗

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 12 / 41

Fuzzing Process

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 13 / 41

Fuzzing Policy

The fuzzing policy is denoted by the function

π : T ∗ × T → [0, 1]

1 πfunc : T ∗ × F → [0, 1]
Selects a function, f ∈ F =

{
f1, f2, . . . , f|F |

}
, from the set of public

functions of the target contract

2 πargs : T ∗ × F ×X ∗ → [0, 1]
Selects the arguments, x̄ to f

3 πsender : T ∗ × SND → [0, 1]
Selects a sender address from a predefined set of Ethereum addresses

4 πamount : T ∗ × F × AMT → [0, 1]
Selects an amount of Ether to send to the smart contract from a
predefined set of Ether quantities

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 14 / 41

Fuzzing Policy (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 15 / 41

Fuzzing Policy (cont.)
1 Sampling function, fi

fi ∼ πnnfunc(t̄i) = FCNfunc(hi , α(F , t̄i))

2 Sampling function arguments, x̄

hintj = GRUint = (OH(intj−1), hintj−1)

intj ∼ FCNint(h
int
j)

3 Sampling sender, sender

senderi ∼ πnnsender (t̄i) = FCNsender (hi)

4 Sampling amount, amount

amounti ∼ πnnamount(t̄i , fi) =

{
FCNamount(hi) f payable

{0→ 1} otherwise

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 16 / 41

ILF System

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 17 / 41

Structure

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 18 / 41

Structure (cont.)

VerX [1] is used as symbolic execution expert
I Symbolic execution engine
I Designed for Ethereum smart contracts

Apprentice (ILF)[2] learns from expert (VerX)

Once trained, ILF accepts (either seen or unseen) smart contracts as
input

Produces (quasi-)optimal transaction sequences
I Average length of 30
I Reference implementation resets after 50 (for practicality)

Transaction sequences are submitted against target contract

ILF ultimately produces two key deliverables
I Code coverage metrics
I Vulnerability report

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 19 / 41

Training

1 Extract features from bytecode of input smart contract
2 Infer optimal transaction components from these features

I Function
I Arguments
I Sender
I Amount

3 Compute cross-entropy loss

4 Back-propogate
5 Repeat from Step 2 for arbitrarily many steps

I Adjust hidden state weights each time

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 20 / 41

Features
Revert

I Boolean flag
True if previous call to function reverted

I Float
Proportion of transactions that have reverted thus far

Assert
I Boolean flag

True if previous call to function asserts
I Float

Proportion of transactions that have raised an assertion thus far

Return
I Boolean flag

True if previous call to function returned
I Float

Proportion of transactions that have returned thus far

Transaction
I Float

Proportion of transactions that have called function thus far

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 21 / 41

Features (cont.)
Coverage

I Integer
Instruction coverage of contract

I Integer
Instruction coverage of function

Arguments
I Integer

Number of arguments function accepts
I Integer

Number of arguments to function that are addresses

Opcodes
I List

List of 50 most representative opcodes in function’s code
F Ignores arithmetic operations
F Ignores stack operations

Name
I Word embedding of the function’s name

F Via word2vec

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 22 / 41

Issues with Symbolic Execution

Ideal world
I All smart contracts would be executed entirely symbolically
I Symbolic execution engine (VerX, etc.) would choose sequence of

transactions that are maximally covering

Not practical
I Symbolic execution is extremely computationally expensive

F Exponential time complexity
F Linear space complexity

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 23 / 41

Issues with Symbolic Execution (cont.)

Take initial block state, binit . Execute contract symbolically by applying
T1 to binit to yield n resultant block states,

ϕ1
1(T1), ϕ1

2(T1), . . . , ϕ1
n(T1)

For the next transaction in the sequence, generate new resultant block
states for each current block state

ϕ2
1(T1,T2), ϕ2

2(T1,T2), . . . , ϕ2
m(T1,T2)

. . .

Number of constraint variables grows linearly in depth of execution,
k

I O(k)

Due to nature of constraint solvers, overall time complexity grows
exponentially in depth of execution, k

I O(ak)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 24 / 41

Issues with Symbolic Execution (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 25 / 41

Executing the Symbolic Expert

How is the symbolic expert, πexpert(t̄), actually used in ILF?

Two main procedures
I RUNEXPERT(c)

F Accepts target contract, c, as input
F Maintains priority queue, Q, of all observed block states
F Code coverage improvement as priority
F Runs DFSFUZZ(b,Q, c) on each element of Q

I DFSFUZZ(b,Q, c)
F Accepts a block state, priority queue (defined previously), and the

target contract as inputs
F Constructs transaction sequence via depth-first search
F Does this such that each transaction strictly improves code coverage

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 26 / 41

Executing the Symbolic Expert (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 27 / 41

Evaluation

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 28 / 41

Effectiveness of Imitation Learning

How well did ILF learn?

We expect the apprentice policy to achieve strictly less coverage than
the expert policy

I Apprentice will never perfectly learn from expert

How close can we get though?

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 29 / 41

Effectiveness of Imitiation Learning (cont.)

Small contracts (≤ 3000 opcodes)
I Expert takes (on average) 30 transactions to achieve 90% code

coverage
I ILF takes (on average) 30 transactions to achieve 82% code coverage

Large contracts (> 3000 opcodes)
I Expert takes (on average) 49 transactions to achieve 68% code

coverage
I ILF takes (on average) 49 transactions to achieve 57% code coverage

ILF times out on less contracts than the expert (for both categories)
I Essentially sacrifices some coverage to achieve any at all

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 30 / 41

Effectiveness of Imitation Learning (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 31 / 41

Comparison

What value does ILF add?

Higher performance

Higher code coverage
I Closest competitor fuzzer is ECHIDNA

F Achieves at most 70% instruction coverage
F Even after 1,000 transactions

I ILF achieves near 95% in the same number of transactions

Better vulnerability detection
I Many existing tools lack wide array of detectors
I Some existing tools even have buggy detectors
I No existing tools have the same suite of vulnerability detectors as ILF

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 32 / 41

Smart Contract Vulnerabilities

Locking Smart contract is able to be coerced into a state where Ether
can be received by the contract, but never sent (essentially
burning Ether)

Leaking Smart contract is able to be coerced into a state where Ether
can be sent inappropriately

Suicidal Smart contract’s destructor can be called by an adversary

Block Dependency Ether transfers by the smart contract rely on block
state variables (e.g. timestamps, etc.)

Unhandled Exception Smart contract may encounter exceptions which are
not handled

Controlled Delegatecall Smart contract passes attacker-controlled
parameters into a ‘delegatecall‘ operation

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 33 / 41

Vulnerability Detection of Various Competitors

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 34 / 41

Weaknesses of ILF

Where does ILF fall short?

Contracts that have preconditions predicated on block data
I (Example on next slide)

Contracts that require interaction with other smart contracts
I Expert (and thus apprentice) cannot reason about other contracts’

behaviour
I Thus, ILF does not factor other contracts’ behaviour when deciding

optimal transaction at each fuzzing step

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 35 / 41

Weaknesses of ILF (cont.)

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 36 / 41

Conclusion

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 37 / 41

Overall Security Model

ILF is promising
I Combination of fuzzing and symbolic execution extremely effective
I Application of machine learning technologies to smart contract security

also effective

More thorough alternatives exist
I Formal verification

F Verify contract implementation against formal specification
F Automated proof assistants exist to reason about properties of both
F E.g. Isabelle/HOL used on SeL4 [3]
F Very costly in terms of development time, effort, and skills
F Consider risks/rewards

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 38 / 41

Future Work

Extending symbolic execution (and by extension fuzzing) to model
interaction of multiple smart contracts

Survey of smart contract security on the Ethereum mainnet

Formal verification of smart contracts

Integration of tools like ILF into a de facto (or real) standard smart
contract development workflow

I E.g. via Truffle, etc.

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 39 / 41

Bibliography
A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020
IEEE Symposium on Security and Privacy, SP, 2020, pp. 18–20.

J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19, London,
United Kingdom: Association for Computing Machinery, 2019,
pp. 531–548, isbn: 9781450367479. doi:
10.1145/3319535.3363230.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “Sel4: Formal verification of an
os kernel,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, ser. SOSP ’09, Big Sky, Montana,
USA: Association for Computing Machinery, 2009, pp. 207–220,
isbn: 9781605587523. doi: 10.1145/1629575.1629596.

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 40 / 41

https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/1629575.1629596

Q&A

Jack McPherson and Dong Bao (UQ) Learning to Fuzz from Symbolic Execution with Application to Smart Contracts2020-04-29 41 / 41

	Background
	ILF System
	Evaluation
	Conclusion
	References
	Q&A

