
Introduction to Fuzzing
Jack McPherson

Security Engineer & Developer
Sigma Prime

Australia Conference 2024 - Day Two
13 February 2024

Contents

1. Introduction
a. Intended audience
b. Motivation
c. Reasoning about software
d. Software testing

2. Fuzzing theory
3. Fuzzing practice

Introduction

Intended audience

● Sigma Prime, of course!
○ Experienced security researchers
○ Novice security researchers
○ Lighthouse developers

● Largely language agnostic but with a (strong) Rust bias

Motivation

● Why fuzzing?
○ Easy
○ Concrete
○ Effective
○ Applicable

Reasoning about software

● Static analysis
○ Linting
○ Symbolic execution*
○ Model checking (SMT, et. al.)

● Dynamic analysis
○ Testing

■ Unit testing
■ Fuzzing

Software testing

● Process
○ Executing the SUT with certain inputs
○ Checking to see if failures occur

● What’s a failure?
○ Assertions being false at time of evaluation
○ Memory safety violations
○ Crashes

■ Segmentation faults
■ Panics
■ Exceptions

Fuzzing Theory

Fuzzing – in theory

● Big idea
○ Generate inputs (pseudo)randomly

● How to generate inputs?
○ Dumb fuzzing

■ Completely randomly (well, as randomly as computers can achieve, of course)
○ Smart fuzzing

■ Structurally
● Mutation-based

○ We provide the structure of the input and the fuzzer mutates this accordingly
○ Coverage-guided

■ Fuzzer is aware of program’s internal structure (i.e., both code and data)

Fuzzing – in theory (cont.)

● Fuzzing visibility
○ Black-box

■ No knowledge of program internals
● No code
● No recompilation
● No relinking

○ Grey-box
■ Some knowledge of program internals

● Code
● No recompilation
● No relinking

○ White-box
■ Full knowledge of program internals

Fuzzing – in theory (cont.)

● Additional flavours
○ Differential

■ Failures become deviations from a given implementation
■ Obvious applications to Ethereum client development

● Both EL and CL!
○ Snapshot

■ Capture both program and machine state and fuzz from there
■ Restore state after each fuzzing case

Fuzzing – in theory (cont.)

● Components
○ Fuzzer

■ Produces inputs
■ Detects failures
■ Triages failures
■ Minimises fuzzing cases
■ Manages corpus

○ Harness
■ Gets inputs into program
■ Implements custom, application-specific logic
■ Ignores any irrelevant failures

○ SUT

Fuzzing – in theory (cont.)

Fuzzing – in theory (cont.)

● Corpus
○ Collection of fuzzing inputs produced by the fuzzer

● Corpus minimisation
○ Corpi get very large very quickly
○ Very attractive feature of a fuzzer corpus minimisation

● Case minimisation
○ A given test case produced by the fuzzer that actually induces failure may be huge

■ Likely that the bug is reachable via drastically smaller input
○ Very attractive feature of a fuzzer is case minimisation

Fuzzing Practice

Fuzzing – in practice

● Nothing new under the Sun!
○ Everything is just three fuzzers under the hood

■ libfuzzer
■ AFL

● libafl
■ Honggfuzz

● Rust
○ cargo-fuzz (Cargo frontend for libfuzzer)
○ afl.rs (Cargo frontend for AFL)
○ honggfuzz-rs (Cargo frontend for Honggfuzz)
○ cargo-libafl (Cargo frontend for libafl)

Fuzzing – in practice (cont.)

● Solidity
○ Forge!
○ Echidna

● Generalised EVM
○ None practical

■ ILF
■ ???

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

● Go
○ Built-in!

● C/C++
○ The ones we’ve already listed
○ Much more diverse tooling
○ Can target intermediate representations too

■ LLVM, MLIR, etc.
○ Good compiler support

■ GCC
■ Clang

Fuzzing – in practice (cont.)

● Obligations as testers
○ Set up fuzzing environment (installation, configuration, etc.)
○ Identify fuzzing target

■ Write test harness
■ (Optionally) write effective dictionaries to massage fuzzer into reasonable directions

● Inherent tradeoffs though!
■ Run fuzzer against target
■ Monitor coverage, failures, case minimisation, corpus size

○ Do this as much as you can!

Fuzzing – in practice (cont.)

● Identifying good fuzzing targets is where the magic happens
○ This is what differentiates expert fuzzing users from novices
○ Can be very difficult in practice
○ Some good starting points

■ fn(Vec<u8>, …) -> Whatever
■ fn(&[u8], …) -> Whatever
■ fn(JsonBlob, …) -> Whatever
■ fn(SszBlob, …) -> Whatever
■ fn parse_msg_from_network(data_from_untrusted_actor: Vec<u8>) -> Result<Msg,

SomeError>
■ fn parse_str_from_network(string_from_untrusted_actor: String) ->

Result<Msg, SomeError>
○ Any automated means to do this is very welcome!

■ I have thought of a few but would like Better Ones™

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

● How long do I run the fuzzer?
○ It depends!
○ Arguably akin to the halting problem
○ Good heuristic: until the fuzzer stalls

● The importance of coverage
○ Coverage is our measure of how the fuzzer is progressing
○ If the rate of coverage growth gets sufficiently low (chosen w.l.o.g.)

■ Fuzzer has probably stalled
○ Good fuzzers send us heartbeats

Fuzzing – in practice (cont.)

Fuzzing – in practice (cont.)

Live demonstration! (potentially)

Resources

● The Fuzzing Book
● Fuzzing section of ToB’s Testing Handbook
● An empirical study of the reliability of UNIX utilities
● cpuu/awesome-fuzzing
● libfuzzer LLVM documentation
● (Some of) my raw notes from the fuzzing course
● FuzzingLabs Rust fuzzing course
● Learning to Fuzz from Symbolic Execution with Application to Smart Contracts

https://www.fuzzingbook.org
https://appsec.guide/docs/fuzzing
https://dl.acm.org/doi/pdf/10.1145/96267.96279
https://github.com/cpuu/awesome-fuzzing
https://llvm.org/docs/LibFuzzer.html#output
https://notes.jmcph4.dev/0d3a645.html
https://fuzzinglabs.com/rust-security-training/
https://files.sri.inf.ethz.ch/website/papers/ccs19-ilf.pdf

